Bruker’s Hysitron PI 95 TEM PicoIndenter is the first full-fledged depth-sensing indenter capable of direct-observation nanomechanical testing inside a transmission electron microscope (TEM). With this side-entry instrument, it is not only possible to image the mechanical response of nanoscale materials, but also to acquire load-displacement data simultaneously. Further, an integrated video interface allows for time synchronization between the load-displacement curve and the corresponding TEM video.
The Hysitron PI 95 has been carefully designed for compatibility with JEOL, FEI, Hitachi, and Zeiss microscopes. With this instrument it is not only possible to image the mechanical response of nanoscale materials, but also acquire quantitative mechanical data simultaneously. The integrated video interface allows for synchronization between the load-displacement curve and the corresponding TEM video.
The Hysitron PI 95 is uniquely suited for the investigation of nanoscale phenomena. Performing these types of studies in the TEM can provide unambiguous differentiation between the many possible causes of force or displacement transients which may include dislocation bursts, phase transformations, spalling, shear banding or fracture onset.
The Hysitron PI 95 utilizes three levels of control for tip positioning and mechanical testing. In addition to a three-axis coarse positioner and a 3D piezoelectric actuator for fine positioning, the instrument is equipped with a transducer for electrostatic actuation and capacitive displacement sensing for acquiring quantitative nanoscale mechanical data.
Our webinars cover best practices, introduce new products, provide quick solutions to tricky questions, and offer ideas for new applications, modes or techniques.