EPR as a Teaching Tool in the Laboratory

Electron Paramagnetic Resonance (EPR) spectroscopy (also known as Electron Spin Resonance - ESR), is much less well known than some of the other spectroscopy methods, and there are many misconceptions about its size, cost and complexity. EPR is very much suited to an educational environment as the newer instruments can be affordable, portable, require minimum upkeep and can may be used for a wide range of experiments in a teaching laboratory as well as for undergraduate and graduate research projects.

研讨会将描述如何力量的麦克风roESR can be used in introductory, advanced, and or instrumental labs. We will explore the features of the instrument and demonstrate how EPR can be used in the laboratory or classroom to teach both basic concepts and help elucidate non-intuitive subjects such as electron density

In teaching labs, other forms of magnetic resonance are limited to a select few, and this is often due to its being expensive to run combined with the need to book an instrument. This webinar showcases an alternative approach, so that undergraduate laboratory instructors can better prepare chemists for further study by providing hands-on practical experience with the microESR and equip them with a wider range of laboratory skills.

What to Expect

The webinar will look at the principles of EPR and how EPR is the only unambiguous way to look at free radicals. The webinar will focus on the microESR from Bruker BioSpin as a teaching tool in undergraduate labs. Because of its compact size and zero need for maintenance, implementing EPR into undergraduate labs is very straight forward. Participants should expect to see the benefits of a technique that can provide students with hands-on practical experience. The webinar will also demonstrate how the instrument works and what data can be collected.

Key Topics

EPR Principles

  • Theory of EPR
  • Free radical detection
  • Applications

MicroESR

  • Low cost
  • Size and weight
  • Portable
  • Plug in and go instrument
  • Zero maintenance
  • Simple interface

Advantages for Undergraduates

  • Hands on experience of magnetic resonance techniques
  • Ease of use
  • Laboratory/instruction manual on how to use
  • Better preparation for future studies and career
  • Benefits over NMR

Who Should Attend?

The main audience for this webinar is those involved in academic teachings and laboratory instruction. In particular, this webinar is also of interest to chemistry and biochemistry professors, and scientists already using EPR. The webinar will be useful for physics professors, university department chairs, post docs, and graduate students.